x-VITA™ Green-Taq Polymerase

TAQP-SG5-001

Description

xVITA $^{\text{TM}}$ Green-Taq DNA polymerase is a thermostable recombinant enzyme produced in a *E.coli* strain, that carries the cloned pol gene from Thermus aquaticus. The enzyme has $5' \rightarrow 3'$ polymerase activity and a weak $5' \rightarrow 3'$ exonuclease activity but no $3' \rightarrow 5'$ exonuclease activity (proofreading). The 10X Green Buffer contains an agarose loading buffer including two tracking dyes (blue and yellow dye) for visual tracking of DNA migration and a dense compound to facilitate the drop-down of the samples into the well agarose gels. The blue dye (migrates with 3 to 5 kb DNA fragments in 1% agarose gel) and the yellow dye (migrates faster than 10 bp DNA fragments in 1% agarose gel).

Features

- ✓ Molecular Weight: 94 kDa
- Thermostable (half-life at 94°C is 40 minute)
- Adds extra nucleotides (preferentially adenine) without template at 3´ends leaving 3´overhangs PCR fragments.
- ✓ Save time go directly from PCR to gel electrophoresis

Applications

- Routine amplifications
- Colony screening
- Amplifications up to 6 kb using plasmid, viral or genomic DNA as template

Components	
Taq DNA Polymerase (5U/μl)	100 µl
10x Green Buffer*	2x1.25 ml

^{*}Includes 20 mM MgCl₂

Storage

Store at -20°C.

Assay conditions

Store at 25mM Tris-HCl pH9.0 at 25°C, 50mM KCl, 2mM MgCl₂, 0.1mg/mL gelatine, 200 μ M de dATP, dGTP, dTTP, 100 μ M[α 32-P]dCTP (0.05 μ Ci/nmol) and 12.5 μ g activated salmon sperm DNA.

Unit definition

One unit is defined as the amount of enzyme required to catalyse the incorporation of 10 nanomoles of dNTPs into acid-insoluble material in 30 minutes at 74°C.

Quality certifications

- Functionally tested in PCR.
- Undetected bacterial DNA (by PCR).
- Undetectable nucleases activity (endo-, exo, and ribo-).

Protocol

- 1. Thaw on ice and mix all reagents well.
- 2. Keep all reagents and reactions on ice.
- **3.** When setting up multiple reactions, prepare a master mix of water, buffer, dNTPs and polymerase. Prepare enough master mix for one more than the actual number reactions.
- 4. Pipet the master mix into thin walled 0.2 ml PCR tubes.
- 5. Add template and primers separately if they are not used in all reactions.

Recommended PCR assay (20ul assay)

Components	Volume	Final concentration
10X PCR buffer*	2 µL	1X
dNTPs 8 mM mixture	2 µL	0.8 mM
Primer Forward (15 mM)	variable	0.2 - 1 μm
Primer Reverse (15 mM)	variable	0.2 - 1 μm
Template DNA	0.2-10 μL	1.75-2.5 ng/μL
Taq DNA polymerase (5 U/μL)	0.2 μL	0.05 U/μL
PCR grade H₂O	to 20 μL	-

^{*10}X Green Buffer contains 20 mM $MgCl_2$, which is optimal for most applications. If additional optimization is required, 25 mM $MgCl_2$ can be added to the master mix. The optimal Mg^{2+} + concentration should be determined empirically.

For total reaction volumes other than 20ul, scale the reagents proportionally.

Cycling instructions

Step	Temperature	Time	Cycle
Initial activation	94°C	5 min	1
Denaturation	94°C	35 sec	
Annealing	55°C*	30 sec -1 min	25 - 30
Extension	72°C**	1' / kb	
Final extensión	72°C	10 min	1
Storage in the cycler	4°C	∞	1

^{*}Recommended annealing temperature is 5°C below Tm of primers, or use gradient PCR to optimize the annealing temperature.

^{**}The recommended extension step is 1 min for PCR products up to 2 kb. For longer products, the extension time should be prolonged by 1 min/kb.